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Abstract 

It is shown that the only generally applicable crystal- 
lographic approach to the anion excess, fluorite- 
related solid-solution fields reported in the zirconium 
nitride fluoride, uranium nitride fluoride and lan- 
thanide oxide fluoride systems is a composite 
modulated structure approach. A TEM and powder 
XRD study has been made of the ZrNxF4-3x (0.906 
< x < 0.936) system. The appropriate superspace- 
group symmetries characterizing the Q and H sub- 
structures (and indeed the entire composite 
modulated structure) are shown to be P:Abmm:ls-( 
(a e-- 5.2, bQ"- 5.4, cQ-~ 5.4 A, qQ = - -  CQ* + [ C H *  - -  

co*]) if the description used is based upon the Q 
sub-structure and B:Pmcm:sll {a,v = aQ=5.2, bH = 
~bq=2.7, CH=(p/q)cQ (p<q)=0.845cQ--4.56A, q~, 
= ~bH* + [ell* - %*]} if the description used is based 
upon the H sub-structure. The relationships between 
the reciprocal lattices of the component sub- 
structures are given by a~, * =  a a * ,  bH * =  2 h a *  and 
o n * -  1.183%*. Fourier decomposition of the pre- 
viously reported conventional superstructure 
refinement of one member of this solid-solution field, 
Zr108N98Fi38, has provided both underlying parent 
sub-structures as well as an approximation to the 
atomic modulation functions (AM F's) describing the 
mutual influence of the two parent sub-structures 
upon each other. In addition, such a Fourier 
decomposition has given an indication of the sorts of 
problems that will inevitably be encountered in 
accurately determining the appropriate AMF's  when 
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a conventional superstructure refinement of such 
composite modulated structures is attempted. 

1. Introduction 

At an anion to cation ratio around 2.10-2.20 
(i.e.-MX2.1o to MX2.2o ) an anion excess, fluorite- 
related solid-solution field, within which each and 
every composition has its own unique (but closely 
related) structure, has been reported in the zirconium 
nitride fluoride, uranium nitride fluoride and (a 
range of) lanthanide oxide fluoride systems (Abaouz, 
1988; Mann & Bevan, 1972; Jung & Juza, 1973). 
Based upon several reported structure refinements 
(Bevan & Mann, 1975; Bevan, Mohyla, Hoskins & 
Steen, 1990; Jung & Juza, 1973) within the above 
solid-solution fields, Makovicky & Hyde (1981, 
1992) and Hyde & Andersson (1989) described such 
systems as vernier or misfit-layer structures in 
which pseudo-tetragonal unit layers of edge- 
connected {X'}M4 tetrahedra (consisting of a 44 net 
of anions sandwiched between similar, but lower 
density, nets of cations i.e. a {100} layer of fluorite 
type) alternate with pseudo-hexagonal 36 nets of 
anions (see Fig. 1). The most extensively studied of 
such solid-solution fields is the YOxF3-2x (0.78 < x 
< 0.87) system. Phase-analysis studies of this system 
by Mann & Bevan (1972) showed that each and 
every composition within the stoichiometric range 
Y-¥2.12 to YX2.22 ( X =  O,  F) had its own unique struc- 
ture i.e. no diphasic regions could be detected within 
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this composition range. The work of Jung & Juza 
(1973) suggests that the same is true for the 
ZrN,,F4_ 3,̀  (0.906 < x < 0.936) system. It is therefore 
clear that a generally applicable crystallographic 
description of such systems should be based upon a 
composite modulated structure approach (Janner & 
Janssen, 1980; Withers, Thompson & Hyde, 1991; 
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Fig. I. (a) The Abmm, a e = 5.186, bQ = 5.368, cQ = 5.374 ,~, parent 
Q sub-structure obtained from the Jung & Juza (1973) structure 
refinement of ZrlosNgsF~3s. The two Zr and two anion sites per 
primitive parent unit cell are labelled MI, M2 and A 1, A2 (site 
symmetries 2mm, 2ram, 222 and 222) with fractional co- 
ordinates given by -0.191, ~, ~; 0.191, 3, ~ and 0, 0, 0; 0, ~, 0, 
respectively. (b) The Pmcm (but very nearly Ammm), an = aQ = 
5.186, bn = ~be = 2.684, cn = ~c o = 4.534.&, parent H sub- 
structure obtained from the Jung & Juza (1973) structure 
refinement of Zr~0sNgsF138. The two anions per unit cell are 
labelled A I and A2 (site symmetries m2m and m2m) with 
fractional coordinates given by ~, - ) +  0.00069, 0 and I, 
-0.00069, ~, respectively. Note that Ammm space-group sym- 
metry for the parent H sub-structure would result if the very 
small shifts corresponding to the arrows in (b) and of magnitude 
0.00069bn according to Jung & Juza (1973) were put to zero. 

van Smaalen, 1989, 1991 a,b,  1992) rather than upon 
conventional crystallographic structure refinement at 
those special compositions for which a superstruc- 
ture approximation can, apparently validly, be made 
(Bevan, Mohyla, Hoskins & Steen, 1990; Thompson, 
Withers, Sellar, Barlow & Hyde, 1990). 

Composite modulated structures consist of two (or 
more) in general mutually incommensurable parent 
sub-structures, each of which is characterized by its 

• own three-dimensional space group. In this case, the 
two parent sub-structures consist of a three- 
dimensional pseudo-tetragonal (Q) parent sub- 
structure (based upon the above pseudo-tetragonal 
unit layers of edge-connected {X}M4 tetrahedra) and 
a three-dimensional pseudo-hexagonal (H) parent 
sub-structure (based upon the above pseudo- 

° hexagonal 3 6 nets of anions). The mutual influence of 
these two parent sub-structures upon each other 
leads to incommensurate modulation of the ideal 
fractional coordinates of both (Withers, Thompson 
& Hyde, 1991; van Smaalen, 1992). Complete struc- 
tural characterization of such systems requires 

• refinement of both parent sub-structures as well as of 
the atomic modulation functions (AMF's;  P6rez- 
Mato, Madariaga, Zfifiiga & Garcia Arribas, 1987) 
describing the mutual influence of the two parent 
sub-structures upon each other. 

The purpose of this paper is twofold: firstly, to 
determine the appropriate superspace-group sym- 

D 

metry for such systems from the results of a TEM 
study of the ZrN,`F4_ 3,, (0.906 < x < 0.936) system 
[the YOxF3-2,` ( 0 . 7 8 < x < 0 . 8 7 )  system is not 
particularly stable to electron-beam irradiation] and, 
secondly, to provide approximations to the structural 
parameters allowed by this symmetry (and required 
for the characterization of such composite 
modulated structures) via Fourier decomposition of 
the previously reported crystal structure refinement 
of Zrlo8N98F138 (Jung & Juza, 1973). 

2. Experimental 

2.1. S y n t h e t i c  

Synthesis of ZrN,`F4 3,̀  specimens for TEM 
investigation was carried out following the route 
given by Jung & Juza (1973). 

2.2. E l e c t r o n  d i f f r a c t i o n  

Fig. 2 shows typical (a) [100]o, (c) [010]Q and (d) 
[001]Q micro-diffraction patterns of specimens from 
within the ZrNxF4_ 3,̀  (0.906 < x < 0.936) solid- 
solution field. The parent Q and H sub-structure 
reflections are indexed. Fig. 2(b) shows a [100]Q 
selected-area electron diffraction pattern (SADP) 
corresponding to Fig. 2(a). A four-integer schema 
based upon the Q sub-structure is used for indexing. 
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Reciprocal space tends to be dominated by a con- 
spicuous set of strong matrix reflections, G o = 
(h,k,l)o* , corresponding to the metrically ortho- 
rhombic pseudo-tetragonal Q parent sub-structure 
(a o = 5.2, b o ' -  5.4, co--5.4 A). The extinction condi- 
tions characteristic of this pseudo-tetragonal, Q, 
parent sub-structure require an average structure 
space-group symmetry of at least A b  - -. There also 
exists a somewhat weaker set of matrix reflections 
corresponding to the (also metrically orthorhombic) 
pseudo-hexagonal, H, parent sub-structure. The 
extinction conditions characteristic of this pseudo- 
hexagonal, H, parent sub-structure require an 
average structure space-group symmetry of at least 
P-c -  with an = aQ, bn = ~b o and Cn = (p/q)cQ [with 
p/q  continuously variable although always with 
q>p] .  In the case of ZrlosN98F138 (Jung & Juza, 
1973), p = 27 and q = 32, in the case of Y706F9 
(Bevan & Mann, 1975), p = 7 and q = 8 while, in the 
case of Y6OsF8 (Bevan, Mohyla, Hoskins & Steen, 
1990), p = 6 and q = 7. In general, however, p /q  is 
not rational. Given the misfit-layer description of 
Makovicky & Hyde (1992) in terms of 4 4 and 36 
anion nets, one might have expected the parent Q 
and H sub-structures to have A b m m  and A m m m  

space-group symmetries [with an = aQ, bn  = ½bQ, cI-I 
= (p/q)c e (p < q); see Fig. 1] respectively. 

The interaction of these two mutually incommen- 
surable parent sub-structures leads to modulation of 
the fractional coordinates of both (de Wolff, 1988). 
The primary modulation wavevector, qe, characteris- 
tic of the modulation of the parent Q sub-structure is 
given by Qe = (01 l)n* - (011)Q* = be* + (On* - 
eQ*) which is equivalent to - co* + (en* - cQ*) when 
folded back within the first Brillouin zone (see Fig. 
3a; de Wolff, 1974). This folding back of the primary 
modulation wavevector qQ is done so as to be com- 
patible with the superspace-group symmetry conven- 
tions of de Wolff, Janssen & Janner (1981). 
Similarly, the primary-modulation wavevector, qn, 
characteristic of the modulation of the parent H 
sub-structure, is given by q n  = (011)n*-(011)o* = 
½bn* + (en* - co*). Such a primary-modulation 
wavevector falls on the first Brillouin zone boundary 
of the parent H sub-structure (see Fig. 3b) and hence, 
unlike for the Q sub-structure, does not need folding 
back. Both Q and H parent sub-structures become 
incommensurately modulated and each sub-structure 
makes a contribution to the intensity of any particu- 
lar Bragg reflection. 

b 

• • ~ • • 

• • • • 

:1 

Fig. 2. Typical (a) [100] o, (c) 
[010]o and (d) [001]o micro- 
diffraction patterns of specimens 
from within the ZrNxF4- 3~, 
(0.906 < x < 0.936) solid-solu- 
tion field. The parent Q and H 
sub-structure reflections are 
indexed. (b) shows a [100] e 
selected-area electron diffraction 
pattern (SADP) corresponding 
to (a). A four-integer schema, 
(h,k,l,m)e* = hao* + kbo* + leo* 
+ mqo*, based upon the Q sub- 
structure, is used for indexing. 
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The superspace-group symmetry (de Wolff, 
Janssen & Janner, 1981) of the Q sub-structure (and 
indeed of the whole composite modulated structure if 
the description is based upon the Q sub-structure) 
required by the observed extinction conditions is at 
least P:Abm2:lss [No. 39b.15.4 of Table 2 of de 
Wolff, Janssen & Janner (1981)]. The higher symme- 
try superspace group P:Abmm:lsl  [No. 67b.15.4 of 
Table 2 of de Wolff, Janssen & Janner (1981)] is also 
compatible with the observed extinction conditions. 
Convergent-beam electron diffraction patterns 

s • • •  

: , :  - _ 2,, 

(011) 0 

( _oO2)o 

(020)Q (022)Q 
(a) 

O l 
o l 
O l 
o l 
o l 
l I 
l l 

| 
| 
| 
| 

(01o) H 

(b) 

(ooI~ (~)H 

(011 )H (0~'2)H 

Fig. 3. (a) Two equivalent choices (arrowed) for the primary 
modulation wavevector, qo, characteristic of the modulation of 
the parent Q sub-structure with respect to the reciprocal lattice 
of the underlying parent Q sub-structure. The first choice, given 
by q• = (01 l)n* - (011)o* = bo* + (cn* - co*) falls outside the 
first Brillouin zone (dashed lines) of the reciprocal lattice of  the 
underlying parent Q sub-structure. The second choice, and the 
one used in this paper, qe = - c Q * +  ( c , * - c o * ) ,  corresponds 
to folding qo back within the first Brillouin zone and is done so 
as to be compatible with the superspace-group symmetry con- 
ventions of de Wolff, Janssen & Janner (1981). (b) The corre- 
sponding primary modulation wavevector, qn=(011)n  * -  
(001)o* = ~b,* + (on* - co*), characteristic of  the modulation 
of the parent H sub-structure with respect to the reciprocal 
lattice of  the underlying parent H sub-structure. Note that such 
a primary modulation wavevector falls on the first Brillouin 
zone boundary (dashed lines) of the reciprocal lattice of the 
parent H sub-structure and hence does not need folding back. 

(CBP's) taken with the (001)Q* systematic row 
excited (see, for example, Fig. 4), however, strongly 
suggest the presence of mirror symmetry perpendicu- 
lar to the cQ* direction of reciprocal space and hence 
imply that the appropriate superspace-group symme- 
try is P:Abmm:lsl .  The corresponding characteristic 
extinction conditions are as follows: 

F(h,k,l,m)Q = 0 unless k + l = 2n (see Fig. 2) 

F(O,k,l,m)Q=O unless k , l = 2 n  (see Fig. 2a) 

F(h,O,l,m)Q=O unless l , m = 2 n  (see Fig. 2c). 

Similarly the superspace-group symmetry of the H 
sub-structure (and indeed of the whole composite 
modulated structure if the description is based upon 
the H sub-structure) required by the observed extinc- 
tion conditions is at least B:Pmc2~:sls [No. 26a.10.2 
of Table 2 of de Wolff, Janssen & Janner (1981)] but 
again most probably (see Fig. 4), B:Pmcm:sl l  [No. 
51c.10.2 of Table 2 of de Wolff, Janssen & Janner 
(1981)]. The corresponding characteristic extinction 
conditions are: 

F(O,k,l,m)u = 0 unless m = 2n (see Fig. 2a) 

F(h,0,l ,0)u=0 unless l = 2 n  (see Fig. 2c). 

The primary modulation wavevectors characteris- 
tic of the two sub-structures chosen above must be 
consistent with the Bravais classes (de Wolff, Janssen 
& Janner, 1981) of the other. Thus, the reflection 
condition characteristic of the Bravais class of the Q 
sub-structure, i.e. F(h,k,l,m)Q* = 0 unless k + / = 2n, 
must be equivalent to the reflection condition which 
is characteristic of the Bravais class of the H sub- 
structure when the reciprocal lattice vectors of one 
sub-structure are expressed in terms of the other. 
Thus, (h,k,l,m)Q* = haQ* + kbQ* + leQ* + mqQ* = 
[h, ~(k + l) - m, l -  m, 2m - l]n*. That F(h,k,l,m)Q* 
= 0 unless k + 1 = 2n does not place any constraint 

Fig. 4. A typical convergent-beam electron diffraction pattern 
taken with the (001)o* systematic row excited. Note the appar- 
ent mirror plane perpendicular to (001)e*. 
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upon the H sub-structure i.e. it is entirely compatible 
with the Pmcm space-group symmetry of the average 
H sub-structure. Note, however, that this would no 
longer be the case if the average H sub-structure had 
A m m m  rather than Pmcm space-group symmetry. 
This lowering of the average structure space-group 
symmetry of the H sub-structure from A m m m  to 
Pmcm corresponds to an induced q = b* displacive 
modulation and allows bn axis motion in opposite 
directions of the two distinct anions per unit cell (see 
the arrows in Fig. l b). The H sub-structure is thus 
moved at least some way from a 3 6 net back towards 
a 4 4 net. The extent of this motion, however, can 
only be determined from structure refinement. 

Given the experimental observation of a con- 
tinuous smooth variation of qQ and q~/ across the 
whole solid-solution field within the ZrNxFa-3x 
(0.906 < x < 0.936) and YOxF3-2x (0.78 < x < 0.87) 
systems (i.e. the lack of any evidence for q/p 'locking 

32 _7 fi4. in' to rational fractions such as 27, 6, 9, ..), it is clear 
that a generally applicable crystallographic descrip- 
tion of such phases must be based upon a modulated 
structure, or superspace group, approach rather than 
upon conventional crystallographic structure 
refinement at rational values of q/p. In general, qQ 
and q~ are incommensurable with respect to the 
reciprocal lattices of their corresponding sub- 
structures. For rational values of q/p, however, it 
appears that a superstructure approximation can be 
made and a conventional three-dimensional structure 
refinement attempted. Several such structure 
refinements have been carried out within the 
YOxF3-zx (0.78 < x < 0.87) system and one within 
the ZrNxF4-3x (0.906 < x < 0.936) system. 

In the remainder of this paper the reported crystal 
structure refinement of Zr~o8N98F~38 (Jung & Juza, 
1973) is Fourier decomposed into its two constituent 
modulated structures - one corresponding to the Q 
sub-structure and the other to the H sub-structure. 
Both these Q and H sub-structures possess well 
defined, underlying, parent structures which it is 
reasonable to presume should remain fairly constant 
across the whole of the solid-solution field. Fourier 
decomposition of the reported structure refinements 
in terms of these parent structures and their accom- 
panying displacive modulations enables a picture to 
be built up of the whole of the solid-solution field 
provided we make the reasonable assumption that 
only the modulation wavevectors, and not the corre- 
sponding displacement eigenvectors, vary substan- 
tially across the solid-solution field. 

3. The underlying parent sub-cells of ZrlosN9sF13s 
As mentioned above, given the misfit layer descrip- 
tion of Makovicky & Hyde (1992), one might have 
expected the parent Q and H sub-structures to have 

Abmm and .4mmm space-group symmetries [with 
an= aQ, bI4 = ½bQ, cn = (p/q)ce (p < q); see Fig. 1] 
respectively. In the case of ZrjosN98Fj38 (Jung & 
Juza, 1973), p = 27, q = 32 and 32c~t = 27cQ. Fourier 
decomposition and appropriate re-setting of the 
reported crystal structure of Zrlo8N98F138 (Jung & 
Juza, 1973) in such terms gives an Ab2m (but very 
nearly Abmm), aQ=5.186, bo=5.368  and cQ = 
5.374 A average Q structure and a Pmcm (but very 
nearly Ammm),  aH = a o = 5.186, b~/= ½b o = 2.684, 
cz-/= ~cQ = 4.534 A average H structure (with the 
-c- glide located at y = -0 .00303) .  However, the 
extinction conditions characteristic of the whole 
solid-solution series given above require the parent 
structures of both the Q and H sub-structures to 
have at least ram2 point-group symmetry with 
respect to the same origin. This is consistent with an 
underlying parent Q space-group symmetry of Abram 
but not with Ab2m. 

The choice of an underlying parent structure is 
somewhat complicated by the fact that the two sub- 
structures are in fact mutually commensurable - 
albeit at a very high order of commensurability. 
Thus, high-order harmonic q = 0 displacive modula- 
tions of each of the underlying parent structures due 
to their interaction with the other structure and 
resulting in a lowered average structure space-group 
symmetry are technically allowed (see §2 of P+rez- 
Mato, Madariaga, Zfifiiga & Garcia Arribas, 1987). 
In particular, a 27th order harmonic of 
qQ(= -2227--eQ*) allows an origin shift along the bQ 
axis for the oxygen and metal sub-lattices of the 
parent Q structure which need not be equal. Fourier 
decomposition of the reported crystal structure gives 
these parameters as 0b e and 0.00030bQ, respectively. 
Similarly a 32nd order harmonic of q ,  
(=  ~b/~* +~c/4") allows an origin shift along bM for 
the oxygen sub-lattice of the parent H structure 
which again need not equal either of the above 
parameters. It is this b ,  shift of -0.00606bH which 
shifts the location of the -c- glide to y = -0.00303. 
As mentioned above, however, the extinction condi- 
tions characteristic of the whole solid-solution series 
require the parent structures of both the Q and H 
sub-structures to have at least mm2 point-group 
symmetry with respect to the same origin. Thus, in 
what follows, we have set these three parameters to 
zero and taken the resultant Abram (for Q) and 
Pmcm (for H) structures (see Fig. 1) to be the 
underlying parent Q and H sub-structures. If the 
three parameters above are genuinely non-zero, they 
have to be understood in terms of high-order har- 
monic displacive modulations of the Abmm and 
Pmcm parent sub-structures. Note that the space- 
group symmetry of the parent Q sub-structure would 
be A m m m  i.e. an ideal 36 oxygen array if the magni- 
tude of the shift represented by the arrows in Fig. 
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l(b) were zero. Fourier decomposition of the 
reported crystal structure gives a magnitude for this 
shift of on!y 0.00069bn and hence deviation from 
the ideal 36 geometry (according to Jung & Juza, 
1973) is very slight. 

4. Modulation of the parent Q and H sub-structures 

Having defined the parent sub-structures, it is now 
necessary to allow both sub-structures to respond to 
the presence of the other. This response, or 
relaxation, takes the form of compositional and dis- 
placive modulation characterized by appropriate 
compositional and displacement eigenvectors and by 
modulation wavevectors which are harmonics of the 
primary modulation wavevectors already defined 
above. Note that Jung & Juza (1973) did not distin- 
guish between N and F in their refinement of 
Zr108N98F138 and hence no further consideration will 
be given to compositional modulation in this paper. 

As recently pointed out by P6rez-Mato (1991), the 
number of free structural parameters to be refined in 
a superspace-group refinement approach to a com- 
mensurately modulated superstructure is, in prin- 
ciple, precisely the same as the number of free struc- 
tural parameters required for a conventional 
superstructure approach. Thus, the conventional 
space-group symmetry of Cm2a (equivalent to Ab2m 
in the setting we have used) reported for Zr108N98F138 
by Jung & Juza (1973) has exactly the same number 
of free structural parameters as a structure descrip- 
tion using superspace-group symmetries of P:Abmm: 
ls]- for the Q sub-structure and B:Pmcm:slT for the 
H sub-structure. The number of effective structural 
parameters to be refined, however, decreases when 
some of the higher order harmonic modulations can 
be neglected for whatever reason. 

The experimental observation (in the case of the 
ZrNxF4-3x system) that the intensity of satellite 
reflections drops off rapidly with increasing har- 
monic order so that no harmonics of higher order 
than third can ever be detected around the parent 
Bragg reflections of the Q sub-structure in X-ray 
powder patterns implies that the degrees of freedom 
associated with harmonics of order greater than 
three can be neglected. In the specific case of 
Zr108N98F138, inspection of the data of Jung & Juza 
(1973) shows that 240 parent Q sub-structure reflec- 
tions, 414 first-order, 58 second-order, 252 third- 
order and only eight fourth-order satellite reflections 
were measured with no satellite reflections of higher 
order than fourth being observable. As the corre- 
sponding primary modulation wavevector of the Q 
sub-structure 2,. • = -27,.Q , from a conventional super- 
structure point of view there are, in principle, 27 
separate harmonics each with several associated 
degrees of freedom to be refined. Given that no 

harmonics of higher order than fourth could ever be 
detected, however, it is clear that the conventional 
superstructure approach is vastly over para- 
meterized. 

4.1. Modulation of the parent Q sub-structure 

Given an unmodulated parent Q sub-structure 
space-group symmetry of Abmm, the little co-group 
(see Bradley & Cracknell, 1972) of the primary 
modulation wavevector qo ( = - 22-2" * 2760 for 
Zr108N98F138, = - ~6eQ* for Y6OsF8, = - vce* for 
Y706F9  and = yco*, y irrational in the general case) 
and all its higher order harmonics mqe is given by 
{E, C2z, trx, try}. The corresponding multiplication 
table is given by: 

E C2z o'x o'y 
RI 1 1 l l 
R2 1 1 ]" T 
R3 1 T 1 T 
R 4 1 T T 1. 

The superspace-group symmetry of the Q sub- 
structure (and indeed of the whole composite 
modulated structure) implied by the reported space- 
group symmetry of ZrlosN98F138 (Jung & Juza, 1973) 
and required by the observed extinction conditions is 
P:Abmm:Is-1. Such a superspace-group symmetry 
implies that the displacive modulations associated 
with all odd-order harmonics transform with R 3 
symmetry whereas all even-order harmonics trans- 
form with R 1 symmetry. There are two metal atoms 
and two anions per primitive parent unit cell - 
labelled MI, M2 and A1, A2, in Fig. l(a). An R 3 
irreducible representation constrains the correspond- 
ing displacive modulations to entail only b o shifts for 
the Zr ions but allows ae and bQ shifts for the 
anions. An R~ irreducible representation allows aQ 
and eQ shifts for the Zr ions but only allows ee shifts 
for the anions. The atomic modulation functions 
(AMF's; see P6rez-Mato, Madariaga, Zfifiiga & 
Garcia Arribas, 1987) describing the most general 
possible structural deviation of these Zr and (N,F) 
ions away from their positions in the underlying 
parent Q sub-cell, for the observed superspace-group 
symmetry of P:Abmm:lsl, can then be written in 
the form: 

UMI,E(TQ) 

= --I- I Q E egx(2mqo;Rl) 
2 m  = 2 , 4  . . . .  

x cos {0 ° + 2m[2rrqo • (T Q + leo) + 0(qo)]} 

+ bo ~. egy[(2m + 1)qo;R3] 
2m+ 1 = 1 . 3  . . . .  

x cos {90 ° + (2m + 1)[2rrqe • (T o + leo) + 0(qe)]} 
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+ c e ~, eMz(2mqe;Rl) 
2m = 2,4 .... 

x cos {90 ° + 2m[27rqe • (T e + ~ce) + O(qe)]} 

and 

U A I , 2 ( T Q )  

= +- aQ ~" e,4xE(2m + 1)qQ;R3] 
2 m +  1-- 1,3 .... 

x cos {0 ° + ( 2 m +  1)[27rqe • T o + 0(qe)]} 

+ b  e ~ eay[(2m+ 1)qe;R3] 
2 m +  1 ~  1,3 .... 

x cos {90 ° + (2m + 1)[2"rrqQ • TQ + 0(qQ)]} 

+CQ ~ eA~(2mqe;R~) 
2m = 2,4 .... 

x cos {90 ° + 2m[2~rqe • TQ + 0(qQ)]}, 

where T e is an allowed Bravais lattice vector of the 
average Q sub-structure and qQ is the, in general, 
incommensurate primary modulation wavevector of 
the Q sub-structure. Note that there are only three 
degrees of freedom associated with each harmonic 
and thus, given that no harmonics of higher order 
than fourth can ever be detected in the ZrNxF4-3x 
(0.906 < x < 0.936) system, only 12 degrees of free- 
dom at most should ever be required to describe the 
Q sub-structure. 

Formally application of the superspace-group 
symmetry operation {C2yl0,0} [equivalent to the 
twofold in the conventional Ab2m space group of 
Jung & Juza (1973)] constrains 0(qQ)= 90 °. In gen- 
eral, we write 0(qe)= 90°+ 00. The global phase 00 
is, in general (i.e. for an incommensurate qQ), arbi- 
trary i.e. a parent sub-structure origin shift of T o is 
equivalent to changing 00 from 0o to 00 - 27rqQ- T e. 
However, when qQ is such that a superstructure 
approximation can be made, as for Zrlo8N98F138, its 
value formally becomes important in determining the 
appropriate space group of the resultant superstruc- 
ture. Thus, in the case of ZrlosN98F138, 00 = - 9 0  ° 
gives rise to a resultant space-group symmetry of 
A2/bl l  whereas 00--0 ° gives rise to the resultant 
space-group symmetry assumed by Jung & Juza 
(1973) of Ab2m. Formally such structures are ener- 
getically and structurally distinct and the corre- 
sponding value of 0o a refineable parameter. For 
'long-period' modulated structures such as the nine- 
fold superstructure of thiourea, however, it has 
recently been shown from refinement statistics 
(P6rez-Mato, 1991) that this global phase is not a 
refineable parameter and that such structures can be 
treated as incommensurate from a practical point of 
view. Given the small number of higher order har- 
monics observed in the present case in conjunction 

Table 1. Q sub-structure mode amplitudes obtained 
from a Fourier decomposition o f  the reported crystal 

structure o f  Zr~osNgsF las 

m eM,,(mq o)  e~ty(mq o )  eMz(mqQ) eAx(mq o)  eAy(mqo)  eAz(mqo)  
1 0 - 0.0296 0 0.0344 - 0.0243 0 
2 0.0000 0 0.0006 0 0 0.0001 
3 0 - 0.0080 0 - 0.0053 0.0082 0 
4 0.0000 0 - 0.0016 0 0 0.0006 
5 0 - 0 . 0 0 1 1  0 - 0 . 0 0 1 3  - 0 . 0 0 2 9  0 
6 0.0000 0 - 0.0014 0 0 0.0002 
7 0 - 0.0004 0 - 0.0000 0.0029 0 
8 0.0000 0 - 0.0008 0 0 0.0004 
9 0 0.0008 0 0.0004 - 0.0023 0 
10 0.0000 0 - 0 . 0 0 1 4  0 0 - 0.0000 
11 0 - 0.0002 0 - 0.0002 0.0015 0 
12 0.0000 0 - 0 . 0 0 1 1  0 0 - 0.0000 
13 0 0.0003 0 - 0.0004 - 0.0020 0 
14 0.0000 0 - 0.0011 0 0 - 0.0003 
15 0 0.0004 0 - 0.0000 0.0019 0 
16 0.0000 0 - 0.0005 0 0 - 0.0004 
17 0 - 0 . 0 0 0 6  0 0.0003 - 0 . 0 0 1 3  0 
18 0.0000 0 0.0004 0 0 - 0.0002 
19 0 0.0006 0 0.0006 0.0025 0 
20 0.0000 0 0.0001 0 0 - 0.0003 
21 0 0.0000 0 - 0 . 0 0 0 3  - 0 . 0 0 1 9  0 
22 0.0000 0 0.0008 0 0 0.0002 
23 0 0.0015 0 0.0000 0.0014 0 
24 0.0000 0 0.0014 0 0 0.0001 
25 0 0.0004 0 0.0004 - 0.0015 0 
26 0.0000 0 0.0014 0 0 0.0004 
27 0 - 0 . 0 0 0 3  0 0 0.0018 0 

with the high order of commensurability, it therefore 
seems highly likely that an equally good refinement 
could be obtained in either of the above space groups 
i.e. the global phase may well not be a refineable 
parameter for this solid-solution field. 

The highest order modulation harmonic required 
in the above equations in order to obtain a fit to the 
Jung & Juza (1973) structure refinement is 
determined by two requirements - firstly that the 
corresponding modulation wavevectors should be 
equivalent (i.e. relatable by an allowed average Q 
sub-structure reflection) and secondly that the corre- 
sponding atomic displacement pattern should trans- 
form according to the same irreducible 
representation. Thus, for Zr~08N98F~38, where qo = 
-~-~cQ*, the ruth and the ( 5 4 - m ) t h  harmonics are 
equivalent and hence harmonics out to 27th order 
must formally be taken into account. The values of 
the above parameters corresponding to the Jung & 
Juza (1973) structure refinement are given in Table 1. 
Values given as 0 are constrained to be zero by 
symmetry. All other values can, in principle, be 
non-zero i.e. are superspace-group allowed. The cor- 
responding AMF's  are shown plotted as a function 
of qQ" (T o + ace) (modulo an integer) for the cations 
in Fig. 5 and qQ'TQ (modulo an integer) for the 
anions in Fig. 6. 

The first point to note about Table 1 is that all the 
degrees of freedom associated with a e motion of the 
Zr atoms are zero according to Jung & Juza (1973). 
It would appear that this is not the result of the 
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refinement (in which case one might have expected 
small but not identically zero modulation ampli- 
tudes) but rather represents an additional constraint 
to the conventional space-group symmetry imposed 
for some unknown reason by Jung & Juza (1973). 
This is confirmed by the fact that a Fourier 
decomposition of the reported crystal structures 
within the YOxFa-2x (0.78 < x < 0.87) system 
(Bevan, Mohyla, Hoskins & Steen, 1990) gives small 
but non-zero values to these superspace-group- 
allowed degrees of freedom. The second point to 
note is that the modulation amplitudes for all har- 
monics of greater order than third are rather 
small [i.e. less than -0.003 (fractional coordinates) 
or -0 .015/~  in magnitude] as they should be, given 
that no harmonics of higher order than fourth can 
ever be detected around parent Q sub-structure 
reflections in the ZrN~F4_ 3x (0.906 < x < 0.936) 
system. 

In a comparable study of the reported crystal 
structure of Nb2Zr6Ol7 [a member of the 
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Fig. 5. A plot of the cation Q sub-structure AMF's derived from 

the Jung & Juza (1973) structure refinement plotted as a func- 
tion of qe" (To + ice) (modulo an integer). The units of the 
ordinate axis are fractional coordinates but they have been 
rescaled so that the height of the appropriate AMF at any 
particular point is directly proportional to the corresponding 
shift in A. 

N b 2 Z r x - 2 0 2 x +  1 ( X  = 7.1-10.3) s o l i d - s o l u t i o n  f i e l d  

(Withers, Thompson & Hyde, 1991)], it was found by 
Fourier decomposition that certain superspace- 
group-forbidden degrees of freedom were in fact 
allowed by the conventional space-group symmetry 
used. All such superspace-group-forbidden modula- 
tion amplitudes refined to small but nonetheless non- 
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axis are fractional coordinates but they have been rescaled so 
that the height of the appropriate AMF at any particular point 
is directly proportional to the corresponding shift in A. 
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zero values. These refined superspace-group- 
forbidden modulation amplitudes give a measure of 
the uncertainty which should be ascribed to the 
remaining superspace-group-allowed modulation 
amplitudes. In that case, this measure of the 
uncertainty or error to be associated with the 
stronger scattering metal-atom modulation ampli- 
tudes corresponded to -0 .003 (fractional co- 
ordinates) or -0 .015 A. Such an uncertainty or 
error will also apply to the modulation amplitudes 
for the Q sub-structure given in Table 1, i.e. it is 
highly likely that superspace-group-allowed modula- 
tion amplitudes less than -0 .003 in Table 1 might as 
well be put to zero and really represent 'noise' on the 
AMF's. In that case, only two modulation harmon- 
ics, namely the first and the third, and six associated 
structural parameters are required in order to define 
the AMF's associated with the Q sub-structure. The 
substantial amplitude of the third-order harmonics 
with respect to the first-order harmonics (see Table 
1) gives the corresponding AMF's  more of a 'square 
wave' rather than sinusoidal appearance and sug- 
gests that the structure may well be composed of 
domain-like regions of commensurate sub-structures 
separated by regions where the phase of the modula- 
tion varies rapidly. However, a much better 
refinement is really needed before such details can be 
discussed. Note that even such small-amplitude 
higher order harmonic modulations can sometimes 
give rise not just to random noise on the AMF signal 
but to sharp chemically implausible spikes [see the 
U~(Q) AMF shown in Fig. 6]. Such spikes on the 
AMF's of the stronger scattering sub-structure could 
well be expected to cause problems in determining 
the AMF's  associated with the weaker scattering H 
sub-structure. Finally note the phase relationships of 
the various AMF's  e.g. the '90 ° out of phase' phase 
relationship between the u~t(Q) and L~At(Q) AMF's. 

4.2. Modulation of the parent H sub-structure 

Given an unmodulated parent H sub-structure 
space-group symmetry of Pmcm, the little co-group 
of the primary modulation wavevector qn (= ½bn* + 
3"-~CH* for ZrlosN98F138, = ~bH* + +ell* for Y6OsF8, = 
½bij* + ~Cn* for Y706F9 and = ~bn* + yew*, 3' 
irrational in the general case) and all its higher order 
harmonics mqH is given by {E, Qz, trx, ~ry}. The 
corresponding multiplication table is given above. 
The superspace-group symmetry of the H sub- 
structure implied by the reported space-group sym- 
metry of Zrt08N98F138 (Jung & Juza, 1973) and 
required by the electron diffraction evidence is B: 
Pmcm:sl 1. Such a superspace-group symmetry 
implies that the displacive modulations associated 
with all odd-order harmonics transform with R4 
symmetry whereas all even order harmonics trans- 

form with R1 symmetry. There are only two anions 
per primitive parent unit cell of the H sub-structure 
- labelled At, A2 in Fig. l(b). An R4 irreducible 
representation constrains the corresponding displa- 
cive modulations to entail only aH shifts whereas an 
R~ irreducible representation allows bn and cn shifts. 
The AMF's describing the most general possible 
structural deviation of the (N,F) ions away from 
their positions in the underlying parent H sub- 
structure, for the observed superspace-group symme- 
try of B:Pmcm:sll, can then be written in the form: 

UAI.2(TH) 

= a n  ~ eAx[(2m+ 1)qn;n4] 
2 m +  t = t , 3  . . . .  

× cos{90 ° + ( 2 m +  1)[2-n'q/," ( T n -  ± ~en)+ 0(q,)]} 

±bn Z eny(2mqn,'Rl) 
2 m  = 2 , 4  . . . .  

× cos {0 ° + 2m[27rqn" ( T n -  ± ~cn)+ 0(qn)]} 

+ c ,  ~ eAz(2mqn,'Rl) 
2 m  = 2 , 4  . . . .  

× cos {90 ° + 2m[2rrqu " ( T . -  + lcu) + 0(q.)]}. 

Note that there is only one degree of freedom associ- 
ated with each odd-order harmonic and two degrees 
of freedom associated with each even-order har- 
monic. Application of the superspace-group sym- 
metry operation {C2yl0,0} gives 0(qn) = 0  ° + 
2rrqu '~c, .  In general we write O(qn) = 0  ° + 
2~-qn" ~cn + 00, where 00 is the same global phase 
parameter defined in ~4.1 above. Also as in ~4.1 
above, 00 = - 9 0  ° gives rise to a resultant space- 
group symmetry of A2/bl 1 whereas 0o = 0 ° gives rise 
to the resultant space-group symmetry assumed by 
Jung & Juza (1973) of Ab2m for ZrlosN98F138. Note 
that harmonics out to 16th order must formall~,, be 
taken into account for Zrlo8N98F138, where qu = ~bn* 
+~2 c~,*. The values of these parameters correspond- 
ing to the Jung & Juza (1973) refinement are given in 
Table 2 and the corresponding AMF's  as a function 
of qn 'Tn  (modulo an integer) in Fig. 7. 

The first point to make is that the more weakly 
scattering H sub-structure will, of necessity, be less 
well determined than the more strongly scattering Q 
sub-structure. Therefore, a higher uncertainty needs 
to be ascribed to the modulation amplitudes associ- 
ated with the H sub-structure. In the study of 
Nb2Zr6Ol7 (Withers, Thompson & Hyde, 1991), for 
example, the refined superspace-group-forbidden 
modulation amplitudes associated with the more 
weakly scattering anion sub-structure corresponded 
to -0.01 (fractional coordinates) or - 0 . 0 5 / k  i.e. 
- 2 - 3  times larger than those associated with the 
metal-atom sub-structure. Using a similar criterion, 



950 FLUORITE-RELATED SOLID-SOLUTION FIELDS 

Table 2. H sub-structure mode amplitudes obtained 
from a Fourier decomposition of the reported crystal 

structure of Zr108N98F138 

m eA~(mqu) eAy(mqn) eA z(mqn) 
1 0.0617 0 0 
2 0 -0.0062 - 0.0196 
3 0.0154 0 0 
4 0 -0.0007 0.0173 
5 -0.0015 0 0 
6 0 -0.0061 - 0.0102 
7 -0.0024 0 0 
8 0 - 0.0018 0.0000 
9 -0.0042 0 0 
10 0 -0.0012 - 0.0066 
11 -0.0050 0 0 
12 0 0.0022 -0.0153 
13 -0.0027 0 0 
14 0 0.0004 -0.0062 
15 -0.0017 0 0 
16 0.0000 0.0006 0 
32 0 -0.0061 0 

superspace-group-allowed modulation amplitudes 
less than N0.01 in Table 2 might as well be put to 
zero. 

There is clearly a large AMF along the an direc- 
tion but to all intents and purposes none along the 
bn direction. The AMF along the cn direction is 
more problematical in that it fluctuates wildly as a 
function of qn" TH (modulo an integer) in Fig. 6. 
One would usually expect modulation amplitudes to 
decrease monotonically with harmonic order as is the 
case for all the other AMF's. In this case, however, 
the modulation amplitude associated with the 12th- 
order harmonic is almost of the same magnitude as 
that associated with the second-order harmonic. Our 
suspicion is that this AMF is implausible but to 
check this point would require a full refinement using 
a modulation wave approach. As for the Q sub- 
structure, it would appear that only two modulation 
harmonics, again the first and the third, are required 
to describe the x and y axis AMF's of the H sub- 
structure. The z axis AMF of the H sub-structure 
clearly remains to be determined. Again, as for the Q 
sub-structure, the substantial amplitude of the third- 
order harmonic of the x axis AMF with respect to 
the first-order harmonic (see Table 2) gives the corre- 
sponding AMF more of a 'square wave' rather than 
a sinusoidal appearance. 

In conclusion, the appropriate superspace-group 
symmetries characterizing the Q and H sub- 
structures (and indeed the entire composite- 
modulated structure depending upon which sub- 
structure the description is based) in the ZrNxF4-3,, 
(0.906 < x < 0.936) system have been shown to be P: 
Abmm:lsT for the Q sub-structure and B:Pmcm:sl-1 
for the H sub-structure respectively. Fourier 
decomposition of the previously reported conven- 
tional superstructure refinement of one member of 
this solid-solution field, ZrlosN98Fi38, has provided 

both underlying parent sub-structures as well as an 
approximation to the atomic modulation functions 
(AMF's) describing the mutual influence of the two 
parent sub-structures upon each other. In addition, 
this Fourier decomposition has given an indication 
of the sorts of problems (e.g. spurious 'noise' on 
AMF's) that will inevitably be encountered in accur- 
ately determining the appropriate AMF's when a 
conventional superstructure refinement of such com- 
posite modulated structures is attempted. It also 
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cor responding  shift in A. 
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indicates that a full structure refinement based upon 
a composite modulated structure approach is needed 
in order to obtain chemically plausible AMF's - in 
particular the chemically implausible spike associ- 
ated with the bQ axis shifts of the Q sub-structure 
anions and the en axis shifts of the H sub-structure 
should be refined. 
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Abstract 

Two new high-pressure tungsten oxides, prepared at 
P = 50 x 105 kPa and T = 1773 K, have been investi- 
gated by high-resolution electron microscopy. The 
formula, W308 for both phases, and the structures 
were deduced from the micrographs and verified by 
simulated image calculations. The phases are both 
orthorhombic, with the following unit-cell dimen- 
sions determined from X-ray powder patterns: 
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W308(I), a = 6.386 (9), b = 10.43 (5), c = 3.80 (1)/~, 
V = 253.1 A3, Z = 2, space group C222; W308(II), 
a=10 .35(5) ,  b=13.99(5) ,  c=3 .78 (1 )  A, V= 
547.3 A 3, Z = 4, space group Pbam. The first struc- 
ture, W 3 0 8 ( I ) ,  which is more dense than the other, is 
isostructural with U308 [Andresen (1958). Acta 
Cryst. 11, 612-614] and with the high-pressure 
modification of Nb307F. The less densely packed 
phase, W308(II), has a new type of structure, which 
contains groups of four edge-sharing WO6 octahedra 
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